Un nouveau mode de communication pour les cellules de notre cerveau

Start

Le cerveau révèle petit à petit les mystères de son fonctionnement. Outre l’étude des neurones, les chercheurs et chercheuses s’intéressent de plus en plus au rôle d’autres types de cellules du système nerveux qui aident les neurones dans leurs tâches quotidiennes. Une étude conduite par des scientifiques de l’Inserm, du CNRS, de l’AP-HP et de Sorbonne Université, regroupés au sein de l’Institut du Cerveau à l’hôpital Pitié-Salpêtrière AP-HP, montre pour la première fois une interaction entre les neurones et les microglies, des cellules immunitaires présentes dans le cerveau. Ce mode de communication jusqu’alors inconnu pourrait être clé pour mieux comprendre les mécanismes de réparation du cerveau ainsi que des pathologies comme la sclérose en plaques. 

Dans notre système nerveux, la transmission de l’influx nerveux (messages nerveux) se fait par le biais des prolongements des neurones, les axones, entourés d’une gaine isolante appelée myéline, couche isolante ou gaine qui se forme autour des nerfs, y compris ceux du cerveau et de la moelle épinière. Elle est composée de protéines et de corps gras. Son but est d’accélérer la transmission des impulsions le long des cellules nerveuses. Cette gaine de myéline, découverte et décrite pour la première fois par Rudolf Virchow en 1854, permet aux impulsions électriques de se transmettre rapidement et efficacement le long des cellules nerveuses. Si la myéline est endommagée, ces impulsions ralentissent. Cela peut provoquer des maladies telles que la sclérose en plaques.

Les nœuds de Ranvier, de petits domaines intercalés entre les segments de myéline sont indispensables pour la diffusion rapide de l’information, mais ils sont aussi une plaque tournante d’interactions cellulaires dans le cerveau.

Des études antérieures avaient déjà montré que certains types de cellules du cerveau, comme les oligodendrocytes et les astrocytes, formaient des contacts avec les neurones au niveau de ces nœuds de Ranvier. En revanche, les interactions avec un autre type de cellules essentielles du cerveau, les microglies, n’avait pas été explorées. Ces cellules immunitaires jouent pourtant un rôle clé de protection du cerveau ainsi que dans des processus régénératifs comme la remyélinisation, la reformation de la gaine de myéline, qui est atteinte dans des pathologies comme la sclérose en plaques.

La sclérose en plaques (SEP) est une maladie au cours de laquelle les cellules immunitaires s’attaquent au système nerveux central (SNC). C’est une maladie neurodégénérative chronique au cours de laquelle le système immunitaire provoque des lésions dans le cerveau et la moelle épinière. Elle est principalement causée par des lésions au niveau de la gaine de myéline : la couche qui protège et isole les parties longues et filamenteuses des cellules nerveuses ou axones. Ces axones qui transmettent l’influx nerveux au cerveau et la gaine de myéline qui améliore sa conduction.

Why not enjoy unlimited reading of UP'? Subscribe from €1.90 per week.

Une étude conduite à l’Institut du Cerveau par la chercheuse Inserm Anne Desmazières et ses collègues Rémi Ronzano et Thomas Roux dans l’équipe de Catherine Lubetzki (AP-HP/Sorbonne Université) montre pour la première fois que des contacts et une communication existent entre les neurones et les cellules microgliales au niveau des nœuds de Ranvier.

Grâce à des études menées sur des modèles murins ex-vivo (cultures tissulaires) et in-vivo, notamment par des approches d’imagerie en temps réel permettant d’observer la dynamique de ces contacts, mais également sur du tissu humain, les chercheurs ont révélé une interaction particulièrement stable entre ces deux types de cellules, et un dialogue renforcé dans un contexte de régénération de la myéline. Ils ont également identifié les mécanismes sous-jacents à ce dialogue. C’est l’activité neuronale qui est le médiateur de l’interaction et la renforce.

Les microglies sont capables de « lire » l’information qui arrive au niveau des nœuds de Ranvier sous la forme de signal ionique, modulant ainsi leur état et leur interaction avec le neurone. Une altération de ce signal ionique peut maintenir les microglies dans un état pro-inflammatoire, les empêchant de jouer leur rôle pro-régénératif et pro-remyélinisant.

Dans le cas de la sclérose en plaques, cette découverte ouvre plusieurs pistes de recherche pour mieux comprendre la pathologie, notamment celle de l’impact des signaux inflammatoires existant dans cette maladie sur le dialogue neurone-microglie et le potentiel pro-remyélinisant de la microglie. La découverte de ce dialogue est d’autant plus intéressante que des thérapies à l’essai dans la sclérose en plaques tentent aujourd’hui d’agir sur la physiologie de ces microglies afin de favoriser leur caractère pro-régénératif.

Ce nouveau mode de communication mis en évidence pose aussi la question de l’impact de l’activité neuronale sur le comportement des microglies. En effet, de nombreuses pathologies neurologiques, dont l’épilepsie, sont associées à des altérations de l’activité des neurones, et les conséquences de cette altération sur les cellules microgliales sont encore à ce jour inconnues.

Les résultats font l’objet d’une publication dans la revue Nature Communications.

Source : INSERM

Header photo : Une image en tissu fixé de cervelet de souris adulte, avec une cellule microgliale en vert contactant des nœuds de Ranvier en rouge, avec les paranœuds (zone d’ancrage de l’extrémité des couches de myéline, de part et d’autre du nœud) en bleu. © Inserm/Desmazieres Anne

0 Comments
Inline Feedbacks
View all comments
neurosciences
Previous article

Will our brains remain human?

Next article

Régénérer les neurones perdus, un pari réussi pour la recherche

Latest articles in Applied Neuroscience

Chips in the brain

Chips in the brain

The dream of communicating directly with machines through thought seems to be a reality.

I think so I walk

I think so I walk

Here's a scientific breakthrough that will give a lot of hope to paralyzed people.

JOIN

THE CIRCLE OF THOSE WHO WANT TO UNDERSTAND OUR TIME OF TRANSITION, LOOK AT THE WORLD WITH OPEN EYES AND ACT.
logo-UP-menu150

Already registered? I'm connecting

Register and read three articles for free. Subscribe to our newsletter to keep up to date with the latest news.

→ Register for free to continue reading.

JOIN

THE CIRCLE OF THOSE WHO WANT TO UNDERSTAND OUR TIME OF TRANSITION, LOOK AT THE WORLD WITH OPEN EYES AND ACT

You have received 3 free articles to discover UP'.

Enjoy unlimited access to our content!

From $1.99 per week only.
Share14
Tweet
Share
WhatsApp
Email