Une nouvelle technique d’exploration vient de révèler une biodiversité insoupçonnée qui bouscule nos connaissances biologiques. Une matière noire « bio » dans laquelle pourraient se dissimuler les indices d’un quatrième domaine du vivant.
Les biologistes seraient-ils passés à côté de 85 à 99 % des micro-organismes vivant sur Terre ? Les avancées de la métagénomique leur ont en tout cas permis de mettre en évidence l’existence d’une « matière noire » biologique, surnommée ainsi en référence à la mystérieuse matière sombre dont la masse empêche la dislocation des galaxies et des amas galactiques. Un monde biologique qui révèle peu à peu ses secrets et ses surprises.
Les premières classifications du vivant, établies au XVIIIe siècle par Carl von Linné, se basaient principalement sur des critères morphologiques. Ce système, efficient pour de gros organismes tels les mammifères ou les arbres, l’est beaucoup moins dès qu’il s’agit de classer l’ensemble du vivant, micro-organismes compris.
Les chercheurs se sont alors tournés vers des critères moléculaires universels. Ainsi, quelle que soit l’espèce, toutes les cellules biologiques contiennent des ribosomes, des organites qui servent à synthétiser les protéines. Les variations dans les séquences de ces gènes « ribosomaux présents chez tous les organismes vivants » sont utilisées pour évaluer la distance entre espèces et établir les grandes divisions de l’arbre du vivant. C’est notamment en analysant ces gènes chez les procaryotes que, dans les années 1970, Carl Woese a établi la distinction entre le domaine des bactéries et celui des archées.
Les eucaryotes, les bactéries et les archées sont depuis considérés comme les trois domaines du vivant. Les cellules des eucaryotes se caractérisent par la présence d’un noyau et, généralement, de mitochondries. La quasi-totalité des organismes pluricellulaires appartient au domaine eucaryote, qui comprend également des espèces unicellulaires. Bactéries et archées sont dépourvues de noyau, mais ces dernières se distinguent notamment par la composition de leurs membranes.
Pour classer la multitude de microbes qu’ils continuent de découvrir, les chercheurs cherchent donc d’abord à séquencer leur génome individuel. Mais cela implique que ces lignées cellulaires puissent être isolées et cultivées, ce qui, finalement, est rarement le cas. Éric Bapteste, chercheur à l’unité Évolution Paris-Seine de l’Institut de biologie Paris-Seine [1], rappelle dans sa dernière étude [2] qu’au moins 85 % des microbes connus ne sont pas cultivables.
« Le fait que les microbes ne vivent pas seuls rend la culture pure difficile, explique Éric Bapteste. Ils appartiennent à des collectifs et à diverses formes de symbioses. Parfois, certaines espèces se succèdent dans le temps et il faudrait donc d’abord cultiver leurs précurseurs et reproduire toute la succession. Les chercheurs se trouvent devant un véritable défi biologique, biochimique et temporel. »
Divers outils permettent néanmoins de séquencer une grande partie des gènes présents dans un environnement donné, sans forcément les attribuer à des espèces particulières. On parle de métagénomique. Ces études peuvent aussi bien s’appliquer à notre flore intestinale qu’à des recoins extrêmes de notre planète, comme les geysers.
La métagénomique a permis de révéler une biodiversité inconnue, y compris dans des environnements extrêmes comme les geysers (parc de Yellowstone, États-Unis).
© BERZINA/FOTOLIA.COM
Les chercheurs inventorient les séquences génétiques obtenues dans ces analyses métagénomiques, puis en retranchent celles qui correspondent aux organismes connus et cultivés. Pour explorer la diversité des séquences génétiques, l’équipe d’Éric Bapteste et de son collègue Philippe Lopez a employé une méthode en deux temps. Ils ont cherché dans l’environnement des séquences ressemblant à celles déjà connues, puis ont ensuite effectué une seconde analyse pour établir des liens supplémentaires.
« Si l’on prend l’exemple d’une recherche de parenté à partir de photos de famille, précise Éric Bapteste, la ressemblance entre un individu et son grand-père ne sera pas forcément évidente. Des liens peuvent cependant être trouvés si l’on rapproche l’enfant de son père, puis son paternel de son grand-père. Le lien indirect entre les individus de ces trois générations apparaît alors. »
Lire la suite sur le Journal du CNRS
1. Unité CNRS/UPMC/Inserm.
2. « Highly divergent ancient gene families in metagenomic samples are compatible with additional divisions of life », Lopez et al., Biology Direct, 26 octobre 2015, vol. 10 : 64.
Photo : I.CUMMING/IKON IMAGES/CORBIS
S’abonner
Connexion
0 Commentaires
Les plus anciens
Les plus récents
Le plus de votes
Inline Feedbacks
View all comments