Regardez le monde
avec les yeux ouverts

Inscrit ou abonné ?
CONNEXION

UP', média libre
grâce à ses lecteurs
Je rejoins

rejoignez gratuitement le cercle des lecteurs de UP’

swumanoid3

Swumanoïd : le futur nageur olympique ?

Commencez

Swumanoid, robot humanoïde mis au point au Japon par le Tokyo Institute of Technology, est capable de reproduire les mouvements complexes du crawl, du dos crawlé et du papillon. Le but : mesurer l’efficacité des gestes et l’hydrodynamique pour améliorer la technique des nageurs. L’un des créateurs a répondu aux questions de Futura-Sciences.

Trouver le geste parfait pour nager toujours mieux, toujours plus vite. Telle est la quête des nageurs de haut niveau qui se sont une fois de plus illustrés lors de ces Jeux olympiques de Londres. Pour ces athlètes hors norme, la performance se cache dans les détails et chaque trouvaille peut conférer un avantage décisif sur la concurrence. Pour cela, la recherche sportive s’appuie essentiellement sur l’analyse des mouvements grâce à la vidéo. Problème, cette méthode empirique implique que les nageurs soient capables de reproduire, dans l’eau, leurs gestes avec précision et constance. Il est par ailleurs très difficile d’effectuer des mesures en utilisant des capteurs qui peuvent gêner l’athlète.

La solution viendra peut-être de Swumanoid, un robot nageur humanoïde conçu par deux chercheurs du Tokyo Institute of Technology, Motomu Nakashima et Chung Changhyun. Doté de quatre membres articulés mus par 20 minimoteurs électriques étanches, il est capable de reproduire les mouvements spécifiques de trois nages (le crawl, le dos crawlé et le papillon) et d’apporter des informations fiables sur la force motrice générée par les mains, les bras, les jambes ainsi que la résistance du corps dans l’eau. Swumanoid a été construit à la moitié de l’échelle humaine, mais le volume et le poids de chacune de ses pièces ont été calculés pour reproduire les proportions et la gravité. Il pèse au total 5,5 kg pour 900 mm de haut et 270 mm de large. Le corps et les membres du robot ont été réalisés en acrylonitrile butadiène styrène (ABS) – une matière plastique robuste – grâce à une imprimante 3D.

L’articulation de Swumanoid

Les minimoteurs électriques ont, quant à eux, été modifiés pour pouvoir loger dans les parties les plus étroites des articulations (bras, jambes, chevilles). Douze moteurs assurent les mouvements complexes des bras. Au total, Swumanoid dispose de 21 degrés de liberté : 14 pour les membres supérieurs dont 4 pour les bras et 2 pour chaque épaule et 7 degrés pour les membres inférieurs. « L’une des principales difficultés que nous avons rencontrées concerne la grande variété de mouvements à la jonction de l’épaule. Pour résoudre cela, nous avons ajouté un joint supplémentaire sur chaque épaule afin de reproduire la rétraction scapulaire », explique Motomu Nakashima à Futura-Sciences.

Pourquoi ne pas profiter d’une lecture illimitée de UP’ ? Abonnez-vous à partir de 1.90 € par semaine.

L’équipe de chercheurs japonais a utilisé un scanner 3D pour capturer les mouvements effectués par un nageur de compétition et ensuite s’en servir pour apprendre à nager à Swumanoid. Le robot n’est pas encore autonome, il est piloté à distance par un ordinateur. Swumanoid est, certes, loin d’atteindre la fluidité des mouvements humains, mais le résultat est plutôt impressionnant lorsqu’on le voit nager le crawl en reproduisant fidèlement les gestes.

Vidéo de présentation de Swumanoid, le robot-nageur mis au point par le Tokyo Institute of Technology. © DigInfo, YouTube

Swumanoid, sauveteur en mer ?

« Avec ce robot, nous pouvons mesurer les différences entre les forces motrices des divers mouvements, même si les différences de gestes sont minimes. De telle sorte que nous pouvons savoir quel geste est efficace pour maximiser la force motrice », ajoute le professeur Nakashima. Ce dernier envisage de nombreux débouchés pour Swumanoid qui pourrait, un jour, devenir un sauveteur capable d’aider des nageurs en difficulté. Les progrès réalisés sur le système d’articulation et les mouvements pourraient aussi ouvrir la voie à de nouveaux robots sous-marins.

Il reste cependant un long chemin à parcourir. Car pour le moment, Swumanoid est encore très lent et ne peut fonctionner que relié à une série de bras de soutien. « Nos objectifs à venir consistent à réaliser des essais autonomes sans supports et à développer un algorithme de contrôle de la posture durant la nage », précise Motomu Nakashima. Selon lui, il faut compter encore 10 à 15 ans avant d’imaginer qu’un tel robot puisse jouer les sauveteurs en mer.

{jacomment on}

S’abonner
Notifier de

0 Commentaires
Les plus anciens
Les plus récents Le plus de votes
Inline Feedbacks
View all comments
philippefuchs
Article précédent

Un marathonien sur les routes, connecté et géolocalisé grâce à une spin off de Mines ParisTech

billgates2
Prochain article

Les toilettes du futur de Bill Gates

Derniers articles de Archives Technologies

REJOIGNEZ

LE CERCLE DE CEUX QUI VEULENT COMPRENDRE NOTRE EPOQUE DE TRANSITION, REGARDER LE MONDE AVEC LES YEUX OUVERTS. ET AGIR.
logo-UP-menu150

Déjà inscrit ? Je me connecte

Inscrivez-vous et lisez trois articles gratuitement. Recevez aussi notre newsletter pour être informé des dernières infos publiées.

→ Inscrivez-vous gratuitement pour poursuivre votre lecture.

REJOIGNEZ

LE CERCLE DE CEUX QUI VEULENT COMPRENDRE NOTRE EPOQUE DE TRANSITION, REGARDER LE MONDE AVEC LES YEUX OUVERTS ET AGIR

Vous avez bénéficié de 3 articles gratuits pour découvrir UP’.

Profitez d'un accès illimité à nos contenus !

A partir de 1.70 € par semaine seulement.

Profitez d'un accès illimité à nos contenus !

A partir de $1.99 par semaine seulement.
Partagez
Tweetez
Partagez
WhatsApp
Email
Print