Des astrophysiciens du projet SDSS-III (Sloan Digital Sky Survey), composé en grande partie de chercheurs français, ont effectué la première mesure du taux de l’expansion de l’Univers jeune, âgé de seulement trois milliards d’années, alors que la gravité freinait encore son expansion, avant sa phase actuelle d’expansion accélérée par l’Énergie Noire. Ils ont utilisé pour cela une nouvelle technique permettant de dresser une carte en trois dimensions de l’Univers lointain
Photo : Evolution de l’Univers, depuis le big bang jusqu’à la formation des galaxies actuelles. ©Nasa
Hubble et Lemaître ont mis en évidence l’expansion de l’Univers dans les années 1920 en procédant à deux types de mesures pour un même ensemble de galaxies : la distance entre ces galaxies et nous, ainsi que la vitesse de ces galaxies (en utilisant l’effet Doppler sur les raies de leurs spectres).
Leurs observations sont à l’origine du modèle « standard » actuel de la cosmologie. Au début de l’histoire de l’Univers, cette expansion s’est ralentie continûment, sous l’effet de la gravitation de matière et de la radiation. Mais depuis cinq milliards d’années, ce comportement s’est inversé : l’expansion s’est mise à accélérer, sous l’effet d’une mystérieuse force répulsive produite par « l’énergie sombre ». Des expériences en cosmologie ont permis d’observer cette période d’accélération récente, mais jusqu’ici pas la décélération primitive de l’Univers. Réussir à mesurer cette décélération exige de remonter aux premiers milliards d’années de son histoire, de remonter loin dans le temps, donc d’observer loin dans l’espace. Pour cela, des galaxies ne suffisent plus : à des distances aussi élevées, leur luminosité devient trop faible.
Pour contourner le problème, les astrophysiciens du Sloan Digital Sky Survey (SDSS-III)1 , composé notamment de chercheurs français, se sont donc intéressés aux quasars, des astres lointains et extrêmement brillants. Lorsqu’on mesure le spectre d’un quasar, on voit non seulement sa lumière mais aussi l’absorption résiduelle du gaz intergalactique entre le quasar et nous. Les astrophysiciens ont pu ainsi étudier la distribution du gaz intergalactique et y détecter des nuages d’hydrogène, pour reproduire sur eux une expérience similaire à celle d’Hubble et Lemaître sur les galaxies.
Pour appliquer efficacement cette technique de mesure innovante de SDSS-III, dite de la « forêt Lyman-alpha », encore fallait-il pouvoir disposer d’un très grand nombre de quasars, et dresser ainsi une carte de l’univers lointain et en trois dimensions. C’est le groupe français de SDSS, en partie financé par l’ANR, qui s’est principalement spécialisé dans la recherche, l’étude et la sélection des quasars à observer. Le premier catalogue de la collaboration a été publié mi-octobre et contient 89 000 quasars.
L’étude a porté ensuite sur 50 000 de ces quasars. Elle résulte principalement du travail de chercheurs du laboratoire Astroparticule et Cosmologie (CNRS/Université Paris Diderot/CEA/Observatoire de Paris), de l’Institut de recherche sur les lois fondamentales de l’Univers (Irfu, CEA Saclay) et de l’Institut d’Astrophysique de Paris (CNRS/UPMC), en collaboration avec le reste du groupe SDSS-France (le LAM2, le CPPM3 et l’Institut Utinam4) et l’ensemble de l’équipe SDSS-III.
Au-delà de ce résultat important, SDSS-III va continuer à améliorer notre connaissance de l’énergie noire : à la fin du relevé, en 2014, il aura mesuré plus d’un million et demi de galaxies, et plus de 160 000 quasars. Il aura aussi permis de démontrer que la technique de mesure de la « forêt Lyman-alpha » n’est plus un pari risqué, mais une méthode standard pour explorer l’Univers lointain.
L’Univers aujourd’hui
Notre Univers existe depuis 13 700 millions d’années. Il comporte environ : 72% d’énergie noire responsable de l’expansion accélérée de l’espace, 24 % de matière noire composant principalement les galaxies et 4% des atomes composant la matière visible dont nous-mêmes. Le point tournant dans la compréhension de la matière noire opéré récemment (matière noire tiède) apporte une simplification essentielle au processus de formation des galaxies en accord avec les observations. De plus, les dernières données disponibles sur l’évolution du cosmos et l’inflation primordiale déterminent les deux nombres fondamentaux de l’origine de l’Univers (quantité de germes de densité de la matière et d’espace-temps) mesurables aujourd’hui par la radiation fossile microonde restée intacte depuis que l’Univers était âgé de 300 000 années.
Consulter le site arXiv.org
(Source : CNRS – Novembre 2012)
{jacomment on}